p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24⋊10D4, C25.51C22, C23.517C24, C24.586C23, C22.2952+ 1+4, (C22×C4)⋊33D4, C23⋊2D4⋊24C2, C23.190(C2×D4), (C22×D4)⋊9C22, C23.7Q8⋊76C2, C23.238(C4○D4), C23.23D4⋊66C2, C23.10D4⋊54C2, C23.11D4⋊55C2, C22.29(C4⋊D4), C2.22(C23⋊3D4), (C23×C4).420C22, (C22×C4).127C23, C22.342(C22×D4), C2.C42⋊29C22, C2.33(C22.29C24), C2.36(C22.32C24), (C2×C4⋊D4)⋊22C2, (C2×C4⋊C4)⋊25C22, (C2×C4).377(C2×D4), C2.41(C2×C4⋊D4), (C2×C22≀C2)⋊10C2, (C22×C22⋊C4)⋊25C2, (C2×C22⋊C4)⋊23C22, C22.389(C2×C4○D4), SmallGroup(128,1349)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24⋊10D4
G = < a,b,c,d,e,f | a2=b2=c2=d2=e4=f2=1, ab=ba, eae-1=ac=ca, ad=da, faf=acd, fbf=bc=cb, bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef=e-1 >
Subgroups: 996 in 412 conjugacy classes, 108 normal (20 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C24, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C22≀C2, C4⋊D4, C23×C4, C22×D4, C22×D4, C25, C23.7Q8, C23.23D4, C23⋊2D4, C23.10D4, C23.11D4, C22×C22⋊C4, C2×C22≀C2, C2×C4⋊D4, C24⋊10D4
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C4⋊D4, C23⋊3D4, C22.29C24, C22.32C24, C24⋊10D4
(1 25)(2 14)(3 27)(4 16)(5 7)(6 12)(8 10)(9 11)(13 23)(15 21)(17 32)(18 20)(19 30)(22 28)(24 26)(29 31)
(1 27)(2 28)(3 25)(4 26)(5 29)(6 30)(7 31)(8 32)(9 20)(10 17)(11 18)(12 19)(13 21)(14 22)(15 23)(16 24)
(1 23)(2 24)(3 21)(4 22)(5 9)(6 10)(7 11)(8 12)(13 25)(14 26)(15 27)(16 28)(17 30)(18 31)(19 32)(20 29)
(1 27)(2 28)(3 25)(4 26)(5 20)(6 17)(7 18)(8 19)(9 29)(10 30)(11 31)(12 32)(13 21)(14 22)(15 23)(16 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 10)(2 9)(3 12)(4 11)(5 24)(6 23)(7 22)(8 21)(13 19)(14 18)(15 17)(16 20)(25 32)(26 31)(27 30)(28 29)
G:=sub<Sym(32)| (1,25)(2,14)(3,27)(4,16)(5,7)(6,12)(8,10)(9,11)(13,23)(15,21)(17,32)(18,20)(19,30)(22,28)(24,26)(29,31), (1,27)(2,28)(3,25)(4,26)(5,29)(6,30)(7,31)(8,32)(9,20)(10,17)(11,18)(12,19)(13,21)(14,22)(15,23)(16,24), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10)(2,9)(3,12)(4,11)(5,24)(6,23)(7,22)(8,21)(13,19)(14,18)(15,17)(16,20)(25,32)(26,31)(27,30)(28,29)>;
G:=Group( (1,25)(2,14)(3,27)(4,16)(5,7)(6,12)(8,10)(9,11)(13,23)(15,21)(17,32)(18,20)(19,30)(22,28)(24,26)(29,31), (1,27)(2,28)(3,25)(4,26)(5,29)(6,30)(7,31)(8,32)(9,20)(10,17)(11,18)(12,19)(13,21)(14,22)(15,23)(16,24), (1,23)(2,24)(3,21)(4,22)(5,9)(6,10)(7,11)(8,12)(13,25)(14,26)(15,27)(16,28)(17,30)(18,31)(19,32)(20,29), (1,27)(2,28)(3,25)(4,26)(5,20)(6,17)(7,18)(8,19)(9,29)(10,30)(11,31)(12,32)(13,21)(14,22)(15,23)(16,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,10)(2,9)(3,12)(4,11)(5,24)(6,23)(7,22)(8,21)(13,19)(14,18)(15,17)(16,20)(25,32)(26,31)(27,30)(28,29) );
G=PermutationGroup([[(1,25),(2,14),(3,27),(4,16),(5,7),(6,12),(8,10),(9,11),(13,23),(15,21),(17,32),(18,20),(19,30),(22,28),(24,26),(29,31)], [(1,27),(2,28),(3,25),(4,26),(5,29),(6,30),(7,31),(8,32),(9,20),(10,17),(11,18),(12,19),(13,21),(14,22),(15,23),(16,24)], [(1,23),(2,24),(3,21),(4,22),(5,9),(6,10),(7,11),(8,12),(13,25),(14,26),(15,27),(16,28),(17,30),(18,31),(19,32),(20,29)], [(1,27),(2,28),(3,25),(4,26),(5,20),(6,17),(7,18),(8,19),(9,29),(10,30),(11,31),(12,32),(13,21),(14,22),(15,23),(16,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,10),(2,9),(3,12),(4,11),(5,24),(6,23),(7,22),(8,21),(13,19),(14,18),(15,17),(16,20),(25,32),(26,31),(27,30),(28,29)]])
32 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 2N | 2O | 2P | 2Q | 4A | ··· | 4H | 4I | ··· | 4N |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 8 | 4 | ··· | 4 | 8 | ··· | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | 2+ 1+4 |
kernel | C24⋊10D4 | C23.7Q8 | C23.23D4 | C23⋊2D4 | C23.10D4 | C23.11D4 | C22×C22⋊C4 | C2×C22≀C2 | C2×C4⋊D4 | C22×C4 | C24 | C23 | C22 |
# reps | 1 | 1 | 2 | 2 | 4 | 2 | 1 | 2 | 1 | 4 | 4 | 4 | 4 |
Matrix representation of C24⋊10D4 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0] >;
C24⋊10D4 in GAP, Magma, Sage, TeX
C_2^4\rtimes_{10}D_4
% in TeX
G:=Group("C2^4:10D4");
// GroupNames label
G:=SmallGroup(128,1349);
// by ID
G=gap.SmallGroup(128,1349);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,758,723,185]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^4=f^2=1,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f=a*c*d,f*b*f=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations